

Max Marks: 100

Date: 13.11.2022

ABHIMANYU BATCH MATHEMATICS : REVISION TEST-2 (SET A) Topic: Complex Number + PnC + Probability

1.	The co	The conjugate of a complex number z is $\frac{1}{i-1}$. Then, the complex number is								
	(a)	$\frac{-1}{i+1}$	(b)	$\frac{1}{i-1}$	(c)	$\frac{-1}{i-1}$	(d)	$\frac{1}{i+1}$		
2.	If $z_1 =$	$3 + 2i$ and $z_2 = 2 - $	3i, then	$z_1 + z_2 =$						
	(a)	7-i	(b)	7 + i	(c)	5 + i	(d)	5 – i		
3.	If $z_1 =$	$1 - 3i$ and $z_2 = 2 + $	i, then z	$z_1 + z_2 =$						
	(a)	3 – 2i	(b)	2 + 3i	(c)	3 + 2i	(d)	2 – 3i		
4.	If z is	any complex numb	er, then	$\frac{z-\overline{z}}{2i} =$						
	(a)	purely real			(b)	purely imaginary				
	(c)	either 0 or purely	imagina	ry	(d)	none of these				
5.	$5 + i^{22}$	$+i^{36}+i^{56}=$								
	(a)	-6	(b)	8	(c)	8	(d)	6		
6.	If z =	$(3\sqrt{7}+4i)^2(3\sqrt{7}-4i)^2(3$	4i) ³ , thei	$n \operatorname{Re}(z) =$						
	(a)	$79 \times 3\sqrt{7}$	(b)	$(79)^2 3\sqrt{7}$	(c)	$-4(79)^2$	(d)	$(79)^2(3\sqrt{7}-4i)$		
7.	For a j	positive integer n, th	ne expre	ssion $(1-i)^n \left(1-\frac{1}{i}\right)^n$	equals					
	(a)	0	(b)	2i ⁿ	(c)	2 ⁿ	(d)	4 ⁿ		

8.	3. The value of the sum $\sum_{n=1}^{13} (i^n + i^{n+1})$, where $i = \sqrt{-1}$, equals									
	(a)	i	(b)	i – 1	(c)	i	(d)	0		
9.	If $\left(\frac{1}{1}\right)$	$\left(\frac{-i}{i}\right)^{100} = a + ib$, then								
	(a)	a = 2, b = -1	(b)	a = 1, b = 0	(c)	a = 0, b = 1	(d)	a = -1, b = 2		
10.	If $i^2 =$	-1 , then $i + i^2 + i^3 + i^3$	· to 1	000 terms is equal to						
	(a)	1	(b)	-1	(c)	i	(d)	0		
11.	If z =	$\frac{4}{1-i}$, then \overline{z} is (wh	ere z is	complex conjugate c	of z)					
	(a)	2(1 + i)				$\frac{2}{1-i}$	(d)	$\frac{4}{1+i}$		
12.	If $z_1 =$	$1 - 2i, z_2 = 1 + I$ and	$z_3 = 3$	+ 4i, then $\left(\frac{1}{z_1} + \frac{3}{z_2}\right)$	$\frac{Z_3}{Z_2} =$					
	(a)	13 – 6i	(b)	13 – 3i	(c)	$6-\frac{13}{2}i$	(d)	$\frac{13}{2}$ -3i		
13.	(1 + i)	¹⁰ , where $i^2 = -1$, is	equal to	,						
	(a)	32i	(b)	64 + i	(c)	24i - 32	(d)	24i		
14.	If x +	$iy = (1 + i)^6 - (1 - i)^6$) ⁶ , then y	which one of the follo	wing is	true?				
	(a)	x + y = 16	(b)	x + y = -16	(c)	x + y = -8	(d)	x + y = 8		
15.	If z=	$\frac{7-i}{3-4i}$, then $z^{14} =$								
	(a)	27	(b)	2 ⁷ i	(c)	2 ¹⁴ i	(d)	$-2^{7}i$		
16.	The p	robability of an imp	ossible e	event is						
	(a)	1	(b)	2	(c)	$\frac{1}{2}$	(d)	3		
				Space for Ro	ugh Wo	<u>rk</u>				

17. If in a lottery there are 5 prizes and 20 blanks, then the probability of getting a prize is

- (a) $\frac{1}{5}$ (b) $\frac{2}{5}$ (c) $\frac{4}{5}$ (d) None of these 18. If $P(A) = \frac{1}{4}$, $P(B) = \frac{1}{2}$, $P(A \cup B) = \frac{5}{8}$, then $P(A \cap B)$ is equal to (a) $\frac{3}{8}$ (b) $\frac{1}{8}$ (c) $\frac{2}{8}$ (d) $\frac{5}{8}$
- 19. The probabilities of a student getting first class or second class or third class in an examination are $\frac{2}{7}, \frac{3}{5}, \frac{1}{10}$ respectively. The probability that the student fails is
 - (a) $\frac{6}{70}$ (b) $\frac{11}{70}$ (c) $\frac{3}{35}$ (d) $\frac{1}{70}$

20. A bag X contains 2 white and 3 black balls and another bag Y contains 4 white and 2 black balls. One bag is selected at random and a ball is drawn from it. Then the probability for the balls chosen to be white is

- (a) $\frac{2}{15}$ (b) $\frac{7}{15}$ (c) $\frac{8}{15}$ (d) $\frac{14}{15}$
- 21. Two coins are tossed. What is the probability of getting 2 heads or 2 tails?
 - (a) $\frac{1}{2}$ (b) $\frac{1}{3}$ (c) $\frac{1}{4}$ (d) $\frac{3}{4}$

22. If two balanced dice are tossed once, the probability of the event, that the sum of the integers coming on the upper sides of the two dice is 9, is

- (a) $\frac{7}{18}$ (b) $\frac{5}{36}$ (c) $\frac{1}{9}$ (d) $\frac{1}{6}$
- 23. If P(A) = 0.4, P(B) = x, $P(A \cup B) = 0.7$ and the events A and B are independent, then x =
 - (a) $\frac{1}{3}$ (b) $\frac{1}{2}$ (c) $\frac{2}{3}$ (d) None of these

24. If A and B are two events such that $P(A \cup B) + P(A \cap B) = \frac{7}{8}$ and P(A) = 2P(B), then $P(A) = \frac{7}{8}$

(a)
$$\frac{7}{12}$$
 (b) $\frac{7}{24}$ (c) $\frac{5}{12}$ (d) $\frac{17}{24}$

25.

5. For a biased die the probabilities for different faces to turn up are given below	5.	For a biased die the	probabilities for different faces t	to turn up are given below
--	----	----------------------	-------------------------------------	----------------------------

Face:	1	2	3	4	5	6
Probability:	0.1	0.32	0.21	0.15	0.05	0.17

The die is thrown and you are told that either face 1 or 2 has turned up. Then the probability that it is face 1, is

(a)
$$\frac{5}{21}$$
 (b) $\frac{5}{22}$ (c) $\frac{4}{22}$ (d) None of these

26. Two dice are thrown simultaneously. The probability of obtaining a total score of 5 is

(a)
$$\frac{1}{9}$$
 (b) $\frac{1}{18}$ (c) $\frac{1}{36}$ (d) $\frac{1}{12}$

27. If two dice are thrown simultaneously, then the probability that the sum of the numbers which come up on the dice to be more than 5 is

(a)
$$\frac{5}{18}$$
 (b) $\frac{5}{36}$ (c) $\frac{13}{18}$ (d) $\frac{1}{6}$

28. Let A and B be two events such that P(A) = 0.3 and $P(A \cup B) = 0.8$. If A and B are independent events, then P(B) =

(a)
$$\frac{5}{6}$$
 (b) $\frac{5}{7}$ (c) $\frac{3}{5}$ (d) $\frac{2}{5}$

29. If two unbiased dice are rolled simultaneously until a sum of the number appeared on these dice is either 7 or 11, then the probability that 7 comes before 11, is

(a)
$$\frac{3}{8}$$
 (b) $\frac{3}{4}$ (c) $\frac{5}{6}$ (d) $\frac{2}{9}$

30.	The p	robability that A sp	eaks trut	h is $\frac{4}{5}$, while this pr	obability	for B is $\frac{3}{5}$. The pro-	bability	of atleast one of them
	is true	when asked to spea	ak on an	event is				
	(a)	$\frac{4}{25}$	(b)	$\frac{2}{25}$	(c)	$\frac{3}{25}$	(d)	$\frac{23}{25}$
31.	<u>8!</u> 2(6!)	=						
	(a)	28	(b)	56	(c)	42	(d)	38
32.	$\frac{1}{5!} + \frac{1}{6}$	$\frac{1}{5!} =$						
	(a)	<u>7!</u> 720	(b)	$\frac{7}{720}$	(c)	$\frac{7}{120}$	(d)	$\frac{7!}{120}$
33.	In a c	lass there are 10 boy	ys and 8	girls. The teacher wa	ants to se	elect either a boy or a	girl to r	epresent the class in a
	functi	on. In how many wa	ays the t	eacher can make this	selection	1?		
	(a)	18	(b)	80	(c)	810	(d)	10 ⁸
34.	How	many committees of	f 5 meml	pers can be formed fr	om 6 gei	ntlemen and 4 ladies?		
	(a)	4950	(b)	4590	(c)	3950	(d)	3590
35.	There	are 15 persons in a	party an	d each person shakes	hand wi	th another, then total	number	of hand shakes is
	(a)	¹⁵ P ₂	(b)	$^{15}C_{2}$	(c)	15!	(d)	2(15!)
36.	-	son has 15 friends o lative?	of whom	10 are relatives. In h	now man	y ways can he invite	12 gues	ts such that 8 of them
	(a)	225	(b)	150	(c)	175	(d)	250
37.	In hov	w many ways can 10	0 balls be	e divided between two	o boys, c	one receiving two and	the othe	er eight balls
	(a)	45	(b)	75	(c)	90	(d)	None of these

38.	$\frac{4(45)}{150}$	$\frac{1}{(44!)} + \frac{46!}{(44!)} =$						
	(a)	15	(b)	25	(c)	18	(d)	28
39.	If ⁿ P ₅	$= 60 \times {}^{n-1}P_3$, then r	n is =					
	(a)	6	(b)	15	(c)	10	(d)	12
40.		are four bus routes by bus from A to C		n A and B and three l	ous route	es between B and C.	In how 1	many ways can a man
	(a)	12	(b)	7	(c)	9	(d)	16
41.	In hov	w many ways can a	cricket t	eam of eleven select a	a captain	and a vice-captain a	nongst t	hemselves?
	(a)	21	(b)	121	(c)	110	(d)	22
42.	${}^{n}C_{r} \div {}^{n}$	${}^{n}C_{r-1} =$						
	(a)	$\frac{n-r}{r}$	(b)	$\frac{n+r-1}{r}$	(c)	$\frac{n-r+1}{r}$	(d)	$\frac{n-r-1}{r}$
43.	If ²ⁿ C	$_{3}: {}^{n}C_{2} = 44:3$, then	for whic	ch of the following va	lues of r	, the value of ${}^{n}C_{r}$ will	be 15	
	(a)	r = 3	(b)	r = 4	(c)	r = 6	(d)	r = 5
44.		w many different with a club cards and 2	•		n from a	a well shuffled pack	of 52 p	playing cards so as to
	(a)	6084	(b)	6048	(c)	4086	(d)	4068
45.	The n	umber of all numbe	rs havin	g 5 digits, with disting	ct digits	is		
	(a)	99999	(b)	$9\times {}^9\!P_4$	(c)	$^{10}P_{5}$	(d)	${}^{9}P_{4}$
46.	In how		e letters	of the word 'CABLE	E' be arra	anged so that the vow	els shou	ld always occupy odd
	(a)	24	(b)	36	(c)	12	(d)	18

- 47. Let x denote the number of ways of arranging m boys and m girls in a row so that no two boys sit together. If y and z give the number of ways of arranging m boys and m girls in a row and around a circular table respectively so that boys and girls sit alternately, then x : y : z =m + 1 : m : m - 1 (b) (c) 3:2:1 m - 1 : m : 2(m + 1)m : 2m : 1(a) (d) 48. Everybody in a room shakes hands with everybody else. The total number of handshakes is 45. The total number of persons in the room is 9 5 (a) (b) 10 (c) (d) 15 A village has 10 players. A team of 6 players is to be formed. 5 members are chosen first out of these 10 players 49. and then the captain is chosen from the remaining players. Then the total number of ways of choosing such team is (a) 1260 (b) 210 (c) $({}^{10}C_6)5!$ (d) $({}^{10}C_5)6$ 50.
- 50. A candidate is required to answer 6 out of 12 questions which are divided into two parts A and B each containing 6 questions and he/she is not permitted to attempt more than 4 questions from any part. In how many different ways can he/she make up his/her choice of 6 questions?
 - (a) 850 (b) 800 (c) 750 (d) 700

* * * * *

Max Marks: 100

ABHIMANYU BATCH MATHEMATICS : REVISION TEST-2 (SET A) Topic: Complex Number + PnC + Probability

	1				1				
1.	(a)	2.	(d)	3.	(c)	4.	(a)	5.	(d)
б.	(b)	7.	(c)	8.	(b)	9.	(b)	10.	(d)
11.	(d)	12.	(d)	13.	(a)	14.	(b)	15.	(d)
16.	(d)	17.	(a)	18.	(b)	19.	(d)	20.	(c)
21.	(a)	22.	(c)	23.	(b)	24.	(a)	25.	(a)
26.	(a)	27.	(c)	28.	(b)	29.	(b)	30.	(d)
31.	(a)	32.	(b)	33.	(a)	34.	(c)	35.	(b)
36.	(a)	37.	(c)	38.	(a)	39.	(c)	40.	(a)
41.	(c)	42.	(c)	43.	(b)	44.	(a)	45.	(b)
46.	(b)	47.	(d)	48.	(b)	49.	(a)	50.	(a)